metabelian, supersoluble, monomial
Aliases: C32⋊2Q16, C12.14D6, Dic6.2S3, C4.10S32, (C3×C6).11D4, C3⋊2(C3⋊Q16), C6.9(C3⋊D4), (C3×C12).6C22, C32⋊4C8.1C2, (C3×Dic6).1C2, C2.5(D6⋊S3), SmallGroup(144,61)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C32⋊2Q16
G = < a,b,c,d | a3=b3=c8=1, d2=c4, ab=ba, cac-1=dad-1=a-1, cbc-1=b-1, bd=db, dcd-1=c-1 >
Character table of C32⋊2Q16
class | 1 | 2 | 3A | 3B | 3C | 4A | 4B | 4C | 6A | 6B | 6C | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | |
size | 1 | 1 | 2 | 2 | 4 | 2 | 12 | 12 | 2 | 2 | 4 | 18 | 18 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | -1 | 2 | -1 | 2 | 2 | 0 | 2 | -1 | -1 | 0 | 0 | 2 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 2 | -1 | -1 | 2 | 0 | 2 | -1 | 2 | -1 | 0 | 0 | -1 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | -1 | 2 | -1 | 2 | -2 | 0 | 2 | -1 | -1 | 0 | 0 | 2 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ9 | 2 | 2 | 2 | -1 | -1 | 2 | 0 | -2 | -1 | 2 | -1 | 0 | 0 | -1 | 2 | -1 | -1 | 0 | 0 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ11 | 2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ12 | 2 | 2 | -1 | 2 | -1 | -2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | 1 | -√-3 | √-3 | 0 | 0 | complex lifted from C3⋊D4 |
ρ13 | 2 | 2 | 2 | -1 | -1 | -2 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | 1 | -2 | 1 | 1 | 0 | 0 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ14 | 2 | 2 | 2 | -1 | -1 | -2 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | 1 | -2 | 1 | 1 | 0 | 0 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ15 | 2 | 2 | -1 | 2 | -1 | -2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | 1 | √-3 | -√-3 | 0 | 0 | complex lifted from C3⋊D4 |
ρ16 | 4 | 4 | -2 | -2 | 1 | 4 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ17 | 4 | -4 | 4 | -2 | -2 | 0 | 0 | 0 | 2 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C3⋊Q16, Schur index 2 |
ρ18 | 4 | 4 | -2 | -2 | 1 | -4 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | symplectic lifted from D6⋊S3, Schur index 2 |
ρ19 | 4 | -4 | -2 | 4 | -2 | 0 | 0 | 0 | -4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C3⋊Q16, Schur index 2 |
ρ20 | 4 | -4 | -2 | -2 | 1 | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -3i | 3i | 0 | 0 | 0 | 0 | complex faithful |
ρ21 | 4 | -4 | -2 | -2 | 1 | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 3i | -3i | 0 | 0 | 0 | 0 | complex faithful |
(1 31 46)(2 47 32)(3 25 48)(4 41 26)(5 27 42)(6 43 28)(7 29 44)(8 45 30)(9 24 33)(10 34 17)(11 18 35)(12 36 19)(13 20 37)(14 38 21)(15 22 39)(16 40 23)
(1 46 31)(2 32 47)(3 48 25)(4 26 41)(5 42 27)(6 28 43)(7 44 29)(8 30 45)(9 24 33)(10 34 17)(11 18 35)(12 36 19)(13 20 37)(14 38 21)(15 22 39)(16 40 23)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 15 5 11)(2 14 6 10)(3 13 7 9)(4 12 8 16)(17 47 21 43)(18 46 22 42)(19 45 23 41)(20 44 24 48)(25 37 29 33)(26 36 30 40)(27 35 31 39)(28 34 32 38)
G:=sub<Sym(48)| (1,31,46)(2,47,32)(3,25,48)(4,41,26)(5,27,42)(6,43,28)(7,29,44)(8,45,30)(9,24,33)(10,34,17)(11,18,35)(12,36,19)(13,20,37)(14,38,21)(15,22,39)(16,40,23), (1,46,31)(2,32,47)(3,48,25)(4,26,41)(5,42,27)(6,28,43)(7,44,29)(8,30,45)(9,24,33)(10,34,17)(11,18,35)(12,36,19)(13,20,37)(14,38,21)(15,22,39)(16,40,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,15,5,11)(2,14,6,10)(3,13,7,9)(4,12,8,16)(17,47,21,43)(18,46,22,42)(19,45,23,41)(20,44,24,48)(25,37,29,33)(26,36,30,40)(27,35,31,39)(28,34,32,38)>;
G:=Group( (1,31,46)(2,47,32)(3,25,48)(4,41,26)(5,27,42)(6,43,28)(7,29,44)(8,45,30)(9,24,33)(10,34,17)(11,18,35)(12,36,19)(13,20,37)(14,38,21)(15,22,39)(16,40,23), (1,46,31)(2,32,47)(3,48,25)(4,26,41)(5,42,27)(6,28,43)(7,44,29)(8,30,45)(9,24,33)(10,34,17)(11,18,35)(12,36,19)(13,20,37)(14,38,21)(15,22,39)(16,40,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,15,5,11)(2,14,6,10)(3,13,7,9)(4,12,8,16)(17,47,21,43)(18,46,22,42)(19,45,23,41)(20,44,24,48)(25,37,29,33)(26,36,30,40)(27,35,31,39)(28,34,32,38) );
G=PermutationGroup([[(1,31,46),(2,47,32),(3,25,48),(4,41,26),(5,27,42),(6,43,28),(7,29,44),(8,45,30),(9,24,33),(10,34,17),(11,18,35),(12,36,19),(13,20,37),(14,38,21),(15,22,39),(16,40,23)], [(1,46,31),(2,32,47),(3,48,25),(4,26,41),(5,42,27),(6,28,43),(7,44,29),(8,30,45),(9,24,33),(10,34,17),(11,18,35),(12,36,19),(13,20,37),(14,38,21),(15,22,39),(16,40,23)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,15,5,11),(2,14,6,10),(3,13,7,9),(4,12,8,16),(17,47,21,43),(18,46,22,42),(19,45,23,41),(20,44,24,48),(25,37,29,33),(26,36,30,40),(27,35,31,39),(28,34,32,38)]])
C32⋊2Q16 is a maximal subgroup of
C32⋊SD32 C32⋊Q32 C24.23D6 D12.2D6 D12.4D6 D12.30D6 D12.32D6 Dic6.19D6 Dic6.20D6 S3×C3⋊Q16 Dic6.22D6 C12.D18 He3⋊3Q16 C33⋊6Q16 C33⋊9Q16
C32⋊2Q16 is a maximal quotient of
Dic6⋊Dic3 C12.8Dic6 C12.D18 He3⋊2Q16 C33⋊6Q16 C33⋊9Q16
Matrix representation of C32⋊2Q16 ►in GL4(𝔽5) generated by
3 | 0 | 2 | 0 |
0 | 3 | 0 | 1 |
1 | 0 | 1 | 0 |
0 | 2 | 0 | 1 |
3 | 0 | 2 | 0 |
0 | 1 | 0 | 4 |
1 | 0 | 1 | 0 |
0 | 3 | 0 | 3 |
2 | 0 | 4 | 0 |
0 | 0 | 0 | 2 |
1 | 0 | 3 | 0 |
0 | 1 | 0 | 0 |
0 | 4 | 0 | 1 |
1 | 0 | 3 | 0 |
0 | 0 | 0 | 3 |
0 | 0 | 3 | 0 |
G:=sub<GL(4,GF(5))| [3,0,1,0,0,3,0,2,2,0,1,0,0,1,0,1],[3,0,1,0,0,1,0,3,2,0,1,0,0,4,0,3],[2,0,1,0,0,0,0,1,4,0,3,0,0,2,0,0],[0,1,0,0,4,0,0,0,0,3,0,3,1,0,3,0] >;
C32⋊2Q16 in GAP, Magma, Sage, TeX
C_3^2\rtimes_2Q_{16}
% in TeX
G:=Group("C3^2:2Q16");
// GroupNames label
G:=SmallGroup(144,61);
// by ID
G=gap.SmallGroup(144,61);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,48,73,55,218,116,50,490,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^8=1,d^2=c^4,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of C32⋊2Q16 in TeX
Character table of C32⋊2Q16 in TeX